PLANNED INSTRUCTION

A PLANNED COURSE FOR:

Geometry

Curriculum writing committee:

Joel Davis

Grade Level: 9,10

Date of Board Approval: _____2020_____

Geometry Grading Policy Target Points

	Quiz	Test	Graded Assignments	HW/Part	Total
MP1 points	90	180	40	30	340 points
MP2 points	90	200	40	30	360 points
MP3 points	120	200	40	30	390 points
MP4 points	90	300	40	30	460 points
Total points	390	880	160	120	1550 points
Total percentages	25%	57%	10%	8%	100%

Gradebook Policy for Geometry

Curriculum Map

Overview:

This course follows Algebra 1. It introduces the theorem-proof structure of mathematics. Logical deductive thinking is stressed in the writing of formal proofs and in the solution of geometric problems. Topics include parallel lines, congruent and similar triangles, and the properties of higher polygons.

Time/Credit for the Course: 2 semesters 1 credit, 180 days, meeting 1 period per day

Goals:

- 1. Students will learn data analysis techniques as well as apply probability rules to tables and Venn diagrams.
- 2. Students will apply algebraic processes to determine segment lengths, congruence, and angles measures.
- 3. Students will develop an initial understanding of logical reasoning and proof.
- 4. Students will be able to prove and apply geometric theorems involving congruent triangles.
- 5. Students will prove theorems involving parallel lines cut by a transversal.
- 6. Students will apply theorems involving parallel lines.
- 7. Students will identify, prove, and apply properties of parallelograms.
- 8. Students will apply geometric theorems involving special relationships within triangles algebraically.
- 9. Students will prove and apply theorems involving similar triangles.

- 10. Students will use the Pythagorean Theorem, special right triangles, or trigonometry to "solve" right triangles.
- 11. Students will determine the measurements of angles, arcs and segments within circles.
- 12. Students will calculate the perimeter, area, surface area, and volume of two and threedimensional objects

Unit #1:

- Finding Probability and Simulating data.
- Independent events.
- Probability models and sample space.
- Using Venn Diagrams, Two-way Tables, and Tree Diagrams for Probability.
- Rules for mutually exclusive events and conditional probability.
- Basic geometric terms and concepts: points, lines and planes
- Congruence (segments and angles)
- Midpoint and distance formulas
- Measuring and classifying angles, including special angle pair relationships
- Inductive versus deductive reasoning
- Logically equivalent statements (conditional, converse, inverse, contrapositive)
- Postulates versus theorems
- Formal proof (construct or validate arguments)

Unit #2:

- Congruent triangles
- Proofs involving congruent triangles
- Isosceles and equilateral triangles
- Parallel lines and angles
- Proving lines parallel
- Theorems involving perpendicular lines

Unit #3:

- Properties of polygons
- Properties of parallelograms
- Properties of special parallelograms (rectangles, rhombuses, squares)
- Properties of trapezoids and kites
- Proofs involving parallelograms
- Special segments within triangles
- Triangle inequality theorem
- Similar polygons, focusing on similar triangles
- Proofs involving similar triangles
- Applications involving similarity
- Right triangles and the Pythagorean Theorem
- Special right triangles
- Trigonometric ratios (sine, cosine, and tangent ratios)
- Applications involving trigonometr

Unit #4:

- Circles (center-radius form of a circle)
- Circles (Specific terms, special segments, special angles)
- Coordinate geometry with circles, specifically using the distance and midpoint Formulas
- Equation of a circle
- Area versus perimeter of polygons
- Area and circumference of circles, including arc length and area of sectors
- Area of regular polygons
- Surface area of solids
- Volume of solids

Big Ideas:

- Big Idea #1: There are some mathematical relationships that are always true and these relationships are used as the rules of arithmetic and algebra and are useful for writing equivalent forms of expressions and solving equations and inequalities.
- Big Idea #2: Mathematical statements can be justified through deductive and inductive t=reason and proof.
- Big Idea #3: Numerical quantities, calculations, and measurements can be estimated or analyzed by using appropriate strategies and tools
- Big Idea #4: Euclid's fifth postulate, known as the parallel postulate, is an essential axiom in Euclidean Geometry. Angle measurements are derived from the relationships of parallel and perpendicular lines. The parallel postulate allows these fundamental relationships to hold true.
- Big Idea #5: Patterns exhibit relationships that can be extended, described, and generalized.
- Big Idea #6: Geometric relationships can be described, analyzed, and classified based on spatial reasoning and/or visualization

Textbook and Supplemental Resources:

Glencoe Geometry, 2018, McGraw-Hill Education, 978-0-07-903994-1 Kuta Software: Geometry Geometer Sketchpad GeoGebra Desmos

Curriculum Plan

<u>Unit #1</u>

Time/Days: 45

- Standards (by number): http://static.pdesas.org/content/documents/CF-Math Geo 2016.pdf
 CC.2.3.HS.A.2, CC.2.3.HS.A.3, CC.2.3.HS.A.6, CC.2.3.HS.A.11,CC.2.2.HS.D.1, CC.2.2.HS.D.8, CC.2.2.HS.D.9, 2.3.G.C, 2.4.G.A, 2.8.G.B, 2.2.A1.C, CC.2.4.HS.B, CC.2.4.HS.B.6, C.2.4.HS.B.4
- <u>Anchors</u>: A1.1.1.3.1, A1.1.1.5.1, G.1.2.1.1, G.1.2.1.4, G.1.3.1.1, G.1.3.2.1, G.2.1.2.1, G.2.1.2.3, G.2.2.1.1, G.2.2.1.2

• Eligible Content:

Finding Probability and Simulating data. Independent events. Probability models and sample space. Rules for mutually exclusive events and conditional probability. Basic geometric terms and concepts: points, lines and planes Congruence (segments and angles) Midpoint and distance formulas Measuring and classifying angles, including special angle pair relationships Inductive versus deductive reasoning Logically equivalent statements (conditional, converse, inverse, contrapositive) Postulates versus theorems Formal proof (construct or validate arguments)

Objectives:

- 1. Recognize that some phenomena are random. Predict the long-run regularity of random phenomena (DOK 1,2)
- 2. Understand that the probability of an event as the proportion of times the event occurs in very many repetitions of a random phenomenon. (DOK 1)
- Recognize that the short runs of random phenomena do not display the regularity described by probability. Accept that randomness is unpredictable in the short run, and avoid seeking cause and effect explanations for random occurrences. (DOK – 1,2)
- Design a survey to collect data to calculate probabilities for the students in the class. (DOK – 4)
- 5. Estimate a probability by repeating a simulation many times. (DOK 2)
- 6. Collect and display probability of an event by adding the probabilities of the outcomes that make it up. (DOK 1)

- Use probability rules to find the probabilities of events that are formed from other events, including unions, intersections, complements, and conditional probabilities. (DOK – 1)
- 8. Construct Venn Diagrams, two-way tables, and tree diagrams to model chance behavior and draw conclusions from each diagram. (DOK 2,3)
- Compute probabilities using information provided from Venn diagrams, two-way tables, and tree diagrams. (DOK – 2) Students will be able to name and sketch geometric figures as well as name, measure, and classify angles. (DOK Level One, DOK – Level Two)
- 10. Students will be able to use segment postulates to identify congruent segments and find lengths of segments in the coordinate plane. (DOK Level one)
- Students will be able to use special angle relationships (vertical angles, linear pairs, complementary angles, supplementary angles) to determine angle measures. (DOK Level One)
- 12. Students will be able to use inductive reasoning to discern and describe patterns. (DOK Level Three)
- Students will be able to re-write statements as conditional statements as well as transform statements to the converse, inverse and contrapositive, recognizing which statements are logically equivalent. (DOK – Level one)
- 14. Students will be able to use deductive reasoning to construct a logical argument, including algebraic properties when appropriate. (DOK Level Three)
- 15. Students will be able to use postulates involving points, lines, and planes. (DOK Level Three)
- 16. Students will be able to apply properties of special pairs of angles. (DOK Level Four)
- 17. Students will be able to write elementary proofs of geometric theorems by stating the given, using postulates, properties, or other theorems to arrive at the desired conclusion. (DOK Level Four)

- Opening day activity for the class to get to know each other. Students will play a game of 2 truths and 1 lie. Data will be collected on how many lies a student guessed correctly. This will give an example of quantitative variables.
- 2. Students will create a short survey of 10 questions that they want to know about their classmates. Have a list of possible questions but allow the students to create their own. Oversee the survey so the students are asking for quantitative and categorical variables.
- 3. Students will perform various simulations with cards, dice, and coins to experience probability as long-term relative frequency. Simulations can include "The Office Secret Santa", Landing on orange in Monopoly, a family of 3 children all being boys, being dealt a royal flush in poker.
- 4. Create a human box-and-whisker plot by having the students line up from shortest to tallest. Talk through the procedures for finding median and the quartiles. Add a

teacher and remove random students to the data set to discuss differences in the median and quartiles.

- 5. Students will create and describe histograms from a large set of data (Presidents age at Inauguration)
- 6. Students will analyze graphs that have been found in the news media that are incorrect and comment on the bias and ways the graphs were made misleading.
- 7. Students will analyze two-way tables created by collecting data to predict the chance of a randomly selected person would be in that category.
- 8. Students use SAT problems found from College Board practice tests to answer higher level questions regarding probability and statistics.
- 9. Students will perform various logic puzzles to learn higher order thinking/reasoning skills to draw a specific conclusion
- 10. Students will use geometer's sketchpad to identify properties of points, lines, and planes and discover theorems on terms such as complementary, supplementary, vertical angles, and linear pairs.
- 11. Use Geometer's Sketchpad to show the idea of betweenness of points or segment addition postulate. That only A, B, and C are collinear does AB + BC = AC
- 12. Students will derive the distance formula from the Pythagorean Theorem.
- 13. SAT Problems involving lines and angles from College Board practice tests
- 14. Warm-ups: Algebra Keystone review problems and SAT problems to reinforce key algebra 1 topics including equations of a line, systems of equations, and factoring.

Assessments:

• Diagnostic:

Glencoe Geometry Support File Chapter 1, 2, and 12 Teacher prepared pre-test/diagnostic test Teacher questioning and observation Keystone Benchmark Assessment

• Formative:

Teacher observations, questions, discussions Teacher assigned homework Teacher prepared assessments (quizzes and graded assignments) Warm Ups

• Summative:

Probability Unit Common Assessment (Chapter 12 Sections 12.2, 12.5-12.8) Tools of Geometry Common Assessment (Chapter 1 Sections 1.1-1.5) Logic Common Assessment (Chapter 2 Sections 2.1-2.5)

• <u>Standards (by number)</u>:

<u>http://static.pdesas.org/content/documents/CF-Math_Geo_2016.pdf</u> CC.2.3.HS.A.1, CC.2.3.HS.A.2, CC.2.3.HS.A.3, CC.2.3.HS.A.4, CC.2.3.HS.A.5, CC.2.3.HS.A.6, CC.2.3.HS.A.11, CC.2.3.HS.A.13, CC.2.2.HS.D.1, CC.2.2.HS.D.7, CC.2.2.HS.D.8, CC.2.2.HS.D.9, CC.2.2.HS.D.10, 2.3.G.C, 2.4.G.A, 2.8.G.B, 2.9.G.A, 2.9.G.B, 2.9.G.C, 2.2.A1.C

• <u>Anchors</u>: A1.1.1.3.1, A1.1.1.5.1, G.1.2.1.1, G.1.2.1.3, G.1.3.1.1, G.1.3.1.2, G.1.3.2.1, G.2.1.2.1, G.2.1.2.2, G.2.1.2.3, G.2.2.1.1

Eligible Content:

Congruent triangles Proofs involving congruent triangles Isosceles and equilateral triangles Parallel lines and angles Proving lines parallel Theorems involving perpendicular lines

Objectives:

- Students will be able to classify triangles and find measures of their angles. (DOK Level Two)
- 2. Students will be able to identify congruent figures, accurately stating the congruence relationship. (DOK Level Three)
- 3. Students will be able to use sides and angles to prove triangles congruent. (DOK Level Four)
- 4. Students will be able to use congruent triangles to prove corresponding parts congruent. (DOK Level Four)
- 5. Students will be able to prove and use theorems involving isosceles and equilateral triangles. (DOK Level Four)
- Students will be able to identify angle pairs formed by two lines cut by a transversal. (DOK – Level One)
- Students will be able to use angles formed by parallel lines and transversals. (DOK Level Two)
- Students will be able to use angle relationships to prove that lines are parallel. (DOK – Level Four)
- 9. Students will be able to apply theorems involving perpendicular lines. (DOK Level Two)

<u>Unit #2</u>

- 1. Students will investigate What We Know Problems to identify conclusions from knowing the given information
- 2. Students will connect the idea of conditional statement to proof writing, where the hypothesis is the given and the conclusion is the prove statement. Students will diagram various proof set ups.
- 3. Students will practice SAT problems involving triangles found from the College Board practice tests
- 4. Students will solve algebra applications with triangle properties, including ratio, systems, and linear equations.
- 5. Demonstrate that HL only works for Right Triangles via Geometer's Sketchpad activities.
- 6. Prove that the sum of the interior angles in a triangle are 180 degrees by having the students "rip" the angles of a triangle and making the angles adjacent.
- 7. Prove how angle relationships involving alternate interior, alternate exterior, same side interior, and same side exterior angles imply parallel.
- 8. SAT problems with parallel and perpendicular lines from College Board practice exams.
- 9. Algebra applications with parallel and perpendicular lines, including ratios, systems of equations, and linear equations.
- 10. Warm-ups: Algebra Keystone review problems and SAT problems to reinforce key algebra 1 topics including equations of a line, systems of equations, and factoring.

Assessments:

• Diagnostic:

Glencoe Geometry Support File Chapter 2 and 4 Teacher prepared pre-test/diagnostic test Teacher questioning and observation Keystone Benchmark Assessment

• Formative:

Teacher observations, questions, discussions Teacher assigned homework Teacher prepared assessments (quizzes and graded assignments)) Warm Ups

• Summative:

Congruent Triangles Common Assessment (Chapter 4 Sections 4.1-4.7) Parallel Lines Common Assessment (Chapter 2 Sections 2.6-2.9)

<u>Unit #3</u>

- Standards (by number): http://static.pdesas.org/content/documents/CF-Math Geo 2016.pdf
 CC.2.3.HS.A.1, CC.2.3.HS.A.3, CC.2.3.HS.A.4, CC.2.3.HS.A.7, CC.2.3.HS.A.11, CC.2.3.HS.A.13, CC.2.2.HS.D.1, CC.2.2.HS.D.7, CC.2.2.HS.D.8, CC.2.2.HS.D., CC.2.2.HS.D.10, 2.3.G.C, 2.4.G.A, 2.8.G.B, 2.9.G.A, 2.9.G.B, 2.9.G.C, 2.10.G.A, 2.11.G.A, 2.2.A1.C
- <u>Anchors</u>: A1.1.1.3.1, A1.1.1.5.1, G.1.2.1.1, G.1.2.1.2, G.1.2.1.3, G.1.3.2.1, G.2.1.1.1, G.2.1.1.2, G.2.2.1.1, G.2.2.1.2

Eligible Content:

Properties of polygons Properties of parallelograms Properties of special parallelograms (rectangles, rhombuses, squares) Properties of trapezoids and kites Proofs involving parallelograms Special segments within triangles Triangle inequality theorem Similar polygons, focusing on similar triangles Proofs involving similar triangles Applications involving similarity Right triangles and the Pythagorean Theorem Special right triangles Trigonometric ratios (sine, cosine, and tangent ratios) Applications involving trigonometry

Objectives: (Include DOK Levels, see Attached DOK Wheel and refer to the definition of the DOK levels)

- 1. Students will be able to calculate interior and exterior angle measures in polygons, including angles in regular polygons. (DOK Level One)
- 2. Students will be able to identify, prove, and then apply properties of parallelograms to determine angle and side measures. (DOK Level One)
- 3. Students will be able to use properties to identify special parallelograms. (DOK Level Two)
- 4. Students will be able to identify, prove, and then apply properties of rhombuses, rectangles, and squares. (DOK Level Four)
- 5. Students will be able to identify and apply properties of trapezoids and kites. (DOK Level Four)
- Students will be able to identify special quadrilaterals, given specific properties. (DOK – Level Two)
- 7. Students will be able to identify similar polygons. (DOK Level Three)

- 8. Students will be able to prove that triangles are similar. (DOK Level Three)
- 9. Students will be able to use proportions to solve geometry problems (applications of similarity). (DOK Level Three)
- 10. Students will be able to find and compare slopes of lines as well as write equations of a line. (DOK Level Three)
- 11. Students will be able to find the distance between a point and a line. (DOK Level One)
- 12. Students will be able to use properties of midsegments and write coordinate geometry proofs. (DOK Level Four)
- 13. Students will be able to use perpendicular bisectors, angle bisectors, medians and altitudes to solve problems. (DOK Level Three)
- 14. Students will be able to find possible side lengths of a triangle (Triangle Inequality Theorem). (DOK Level Three)
- 15. Students will be able to apply the Pythagorean Theorem to find side lengths in right triangles. (DOK Level Four)
- 16. Students will be able to classify a triangle by applying the converse of the Pythagorean Theorem. (DOK Level Four)
- 17. Students will be able to use the relationships between the sides of special right triangles. (DOK Level Two)
- 18. Students will be able to apply the sine, cosine, and tangent ratios to find the side lengths in right triangles. (DOK Level Four)
- 19. Students will be able to apply the inverse sine, cosine, and tangent ratios to find angle measures. (DOK Level Four)

- 1. Discover the formulas for polygons (number of diagonals, interior, and exterior angles) through examples and deductive reasoning.
- 2. Problem solving activities with polygons that challenge students to apply the formulas to solve.
- 3. Students discover the relationships of quadrilaterals via Geometer's Sketchpad
- 4. Students will work in teams to prove the relationships they discovered about quadrilaterals and present them to the class.
- 5. SAT problems with quadrilaterals from College Board practice exams
- 6. Algebra applications with quadrilaterals including ratio, systems of equations, and factoring.
- 7. SAT problems with area from College Board practice exams
- 8. Discover methods to prove polygons similar via Geometer's Sketchpad
- 9. Applications with Angle-Angle similarity to use with similar triangles.
- 10. Algebra applications with similarity.
- 11. SAT problems with similarity from College Board practice tests
- 12. Investigate the rules for special right triangles. Use the Pythagorean theorem to show that for similar triangles the relationship between angles and sides are always the same.

- 13. Tell the story of Soh-Cah-Toa to build the trigonometric ratios in right triangles. Build off previous knowledge of special right triangles.
- 14. Apply trigonometric functions to real-world scenarios that require the calculation of a specific distance or angle measure.
- 15. SAT right triangle problems from College Board practice tests
- 16. Warm-ups: Algebra Keystone review problems and SAT problems to reinforce key algebra 1 topics including equations of a line, systems of equations, and factoring.

Assessments:

• Diagnostic:

Glencoe Geometry Support File Chapter 5, 6, 7, and 8 Teacher prepared pre-test/diagnostic test Teacher questioning and observation Keystone Benchmark Assessment

• Formative:

Teacher observations, questions, discussions Teacher assigned homework Teacher prepared assessments (quizzes and graded assignments)) Warm Ups

• Summative:

Quadrilaterals Common Assessment (Chapter 6 Sections 6.1-6.6) Relationships in Triangles Common Assessment (Chapter 5 Sections 5.1-5.3, 5.5-5.6) Similarity Common Assessment (Chapter 7 Sections 7.2-7.6)

Right Triangle Common Assessment (Chapter 8 Sections 8.2-8.5)

Time/Days: 45

- Standards (by number): mber): http://static.pdesas.org/content/documents/CF-Math Geo 2016.pdf
 CC.2.3.HS.A.3, CC.2.3.HS.A.7, CC.2.3.HS.A.8, CC.2.3.HS.A.9, CC.2.3.HS.A.13, CC.2.3.HS.A.14, CC.2.2.HS.D.1, CC.2.2.HS.D.7, CC.2.2.HS.D.8, CC.2.2.HS.D.9, CC.2.2.HS.D.10, 2.3.G.C, 2.3.G.E, 2.4.G.A, 2.7.G.A, 2.8.G.B, 2.9.G.A, 2.9.G.B, 2.9.G.C, 2.10.G.A, 2.11.G.A, 2.11.G.C, 2.2.A1.C
- <u>Anchors</u>: A1.1.1.3.1, A1.1.1.5.1, G.1.1.1.1, G.1.1.1.2, G.1.1.1.3, G.1.1.1.4, G.1.2.1.1, G.1.2.1.2, G.1.2.1.3, G.1.2.1.4, G.1.2.1.5, G.1.3.2.1, G.2.1.1.1, G.2.1.1.2, G.2.2.1.1, G.2.2.1.2, G.2.2.2.1, G.2.2.2.2, G.2.2.2.3, G.2.2.2.24, G.2.2.2.5, G.2.3.1.1, G.2.3.1.2, G.2.3.1.3

• Eligible Content:

Circles (center-radius form of a circle) Circles (Specific terms, special segments, special angles) Proofs involving circles Coordinate geometry with circles, specifically using the distance and midpoint formulas Area versus perimeter of polygons Area and circumference of circles, including arc length and area of sectors Area of regular polygons Surface area of solids Volume of solids

Objectives:

- 1. Students will be able to apply the properties of a tangent within a circle. (DOK Level Four)
- 2. Students will be able to use the measures of central angles to calculate arc measures. (DOK Level One)
- 3. Students will be able to apply the relationships between arcs and chords in a circle. (DOK Level Four)
- 4. Students will be able to calculate the measure of an arc or an angle using inscribed angles of a circle. (DOK Level One)
- 5. Students will be able to calculate segment length in circles. (DOK Level One)
- 6. Students will be able to calculate the area of triangles and parallelograms. (DOK Level One)
- 7. Students will be able to calculate the areas of other types of quadrilaterals. (DOK Level Two)
- Students will be able to calculate the arc lengths and circumference of a circle. (DOK – Level Two)

<u>Unit #4</u>

- 9. Students will be able to calculate the area of circles and sectors. (DOK Level Two)
- 10. Students will be able to calculate the area of regular polygons inscribed in circles. (DOK Level Four)
- 11. Students will be able to identify solids. (DOK Level Two)
- 12. Students will be able to calculate the surface areas of prisms, cylinders, pyramids, cones, and spheres. (DOK Level One)
- 13. Students will be able to calculate the volume of prisms, cylinders, pyramids, cones, and spheres. (DOK Level One)

- 1. Use Geometer's Sketchpad to discover relationships between angles and segments in circles.
- 2. Algebra applications with circles including writing the equation of a circle.
- 3. SAT problems with circles from College Board practice tests
- 4. Use Geometer's Sketchpad to show how regular polygons get closer to a circle as the number of sides increases. Make the connection to limits for the future.
- 5. Discover the formulas for regular polygons area and perimeter.
- 6. Discover formulas for arc length, area of a sector, and segment of a circle.
- 7. Discover formulas for volume and surface area of solids
- 8. Real world applications with solids.
- 9. SAT problems with solids from College Board practice exams
- 10. Warm-ups: Algebra Keystone review problems and SAT problems to reinforce key algebra 1 topics including equations of a line, systems of equations, and factoring.

Assessments:

• Diagnostic:

Glencoe Geometry Support File Chapter 1, 9, 10, and 11 Teacher prepared pre-test/diagnostic test Teacher questioning and observation Keystone Benchmark Assessment

• Formative:

Teacher observations, questions, discussions Teacher assigned homework Teacher prepared assessments (quizzes and chapter tests) Warm Ups

• Summative:

Circle Common Assessment (Chapter 9 Sections 9.2 – 9.1) Area and Perimeter Common Assessment (Sections 1.6, 9.1, 10.1-10.5) Surface Area and Volume Common Assessment (Sections 1.8-1.9, 10.6, 11.2-11.4) Final Exam Common Assessment

Please Go to Human Resources page on the Delaware Valley School District website for updated Payment form to be submitted.

https://pa01001022.schoolwires.net/site/handlers/filedownload.ashx?moduleinstanceid=7055&dataid= 16708&FileName=AUTHORIZATION%20FOR%20PAYMENT%20-%20SECURED.pdf